• OpenAccess
    • List of Articles polymers

      • Open Access Article

        1 - The Origin and Application of Flame Retardant Biobased Polymers in Cellulosic Industry
        mehrnoosh tavakoli ali ghasemian
        Nowadays, In order to reduce environmental footprint, polymer industry has started to develop new materials based on natural resources. Two kinds of biobased polymers can be developed. The first one corresponds to macromolecular structures existing in nature as cellulos More
        Nowadays, In order to reduce environmental footprint, polymer industry has started to develop new materials based on natural resources. Two kinds of biobased polymers can be developed. The first one corresponds to macromolecular structures existing in nature as cellulose, lignin, starch, alginate and so-on that most of them are probably the ones that derived from well-established cellulosic industries. Nevertheless, the thermal stability of these rich in oxygen structures are limited, they release relatively little heat during burning and are often able to char. Other biobased polymers are made up of molecules synthesized from natural resources. Not only polymers but also all additives used to modify their properties can be biobased to meet sustainable development. Intensive research is devoted to develop flame retardant biobased polymers from various raw resources. These flame retardant biobased polymers can be used directly as they are, alone or as a component of a more complex system. This is especially true when the molecules are phosphorus-rich as DNA or phytic acid or charring as lignin. All the efforts reviewed in this paper, show that a major objective is to develop 100 % biobased materials suitable for applications requiring high flame retardancy level. Different biomolecules from the cellulosic industry are also the most promising in flame retardancy. Manuscript profile
      • Open Access Article

        2 - The studying on mechanism, properties and application of shape memory polymers
        Hamidreza Haydari
        Shape memory polymers (SMPs) represent a highly special class of materials. As one representative of the intelligent polymeric systems, these materials gained significant interest in recent years. SMPs are stimuli-responsive polymers, which act as stimulants like light, More
        Shape memory polymers (SMPs) represent a highly special class of materials. As one representative of the intelligent polymeric systems, these materials gained significant interest in recent years. SMPs are stimuli-responsive polymers, which act as stimulants like light, temperature, PH changes, solvent changes, electrical fields or magnetic fields, and their output is strain. Also, these polymers are highly regarded as essential for fundamental research and technological innovation. The present review will provide a short overview with particular attention to structure, mechanisms and applications of SMPs, shape memory effects and, as well as the current developments and concepts for shape memory polymers. The applications of shape memory polymers can be noted in medical industries, commercial industries, S hape memory polymers (SMPs) represent a highly special class of materials. As one representative of the intelligent polymeric systems, these materials gained significant interest in recent years. SMPs are stimuli-responsive polymers, which act as stimulants like light, temperature, PH changes, solvent changes, electrical fields or magnetic fields, and their output is strain. Also, these polymers are highly regarded as essential for fundamental research and technological innovation. The present review will provide a short overview with particular attention to structure, mechanisms and applications of SMPs, shape memory effects and, as well as the current developments and concepts for shape memory polymers. The applications of shape memory polymers can be noted in medical industries, commercial industries, aerospace industries, self-healing polymers, etc. aerospace industries, self-healing polymers, etc. Manuscript profile
      • Open Access Article

        3 - A review of polymer 3D printing technology: materials, process and design strategies for medical applications
        amir hasnvand
        چكيده انگليسي Polymer 3D printing is an emerging technology that further research in this field will lead to continuous improvement of polymer 3D printing design performance, which is necessary to push the boundaries in engineering and medicine. Polymer 3D printing pr More
        چكيده انگليسي Polymer 3D printing is an emerging technology that further research in this field will lead to continuous improvement of polymer 3D printing design performance, which is necessary to push the boundaries in engineering and medicine. Polymer 3D printing provides the possibility of printing low-cost functional parts with various properties and capabilities. Here, by reviewing research on materials, processes and related strategies applied for medical applications, it is presented. Research in materials has led to the development of polymers with useful properties for mechanics and biocompatibility, by tuning the mechanical properties achieved by changing the parameters of the printing process. Polymer 3D printing technologies include extrusion, sheet lamination, Vat photo polymerization, additive layer, powder-based fusion, material projection, direct energy deposition. Thermal and laser inkjet techniques are more common. The two technologies of sheet exfoliation and direct energy deposition have limited medical applications. Which enables the direct deposition of design materials for useful and customized architectures. Design strategies, such as the hierarchical distribution of materials, make it possible to balance contrasting properties. The most investigated medical applications include tissue scaffolds, dental implants, medical education, delivery systems, and drug safety devices. And finally, the challenges and obstacles of polymer 3D printing were studied. Manuscript profile
      • Open Access Article

        4 - A Review of Hydrogels Containing Fibers in Drug Delivery Systems
        Mohammad Hossein Karami Majid Abdouss Mohammadreza Kalaee Omid Moradi
        Hydrogels are three-dimensional networks of hydrophilic polymers capable of absorbing and retaining significant amounts of fluids, which are also widely applied in wound healing, cartilage tissue engineering, bone tissue engineering, release of proteins, growth factors, More
        Hydrogels are three-dimensional networks of hydrophilic polymers capable of absorbing and retaining significant amounts of fluids, which are also widely applied in wound healing, cartilage tissue engineering, bone tissue engineering, release of proteins, growth factors, and antibiotics. In the past decades, a lot of research has been done to accelerate wound healing. Hydrogel-based scaffolds have been a recurring solution in both cases, although their mechanical stability remains a challenge, some of which have already reached the market. To overcome this limitation, the reinforcement of hydrogels with fibers has been investigated. The structural similarity of hydrogel fiber composites to natural tissues has been a driving force for the optimization and exploration of these systems in biomedicine. Indeed, the combination of hydrogel formation techniques and fiber spinning methods has been very important in the development of scaffold systems with improved mechanical strength and medicinal properties. Hydrogel has the ability to absorb secretions and maintain moisture balance in the wound. In turn, the fibers follow the structure of the extracellular matrix (ECM). The combination of these two structures (fiber and hydrogel ) in a scaffold is expected to facilitate healing by creating a suitable environment by identifying and connecting cells with the moist and breathing space required for healthy tissue formation. Modifying the surface of fibers by physical and chemical methods improves the performance of hydrogel composites containing Manuscript profile
      • Open Access Article

        5 - A Review of Hydrogels Containing Fibers in Drug Delivery Systems
        Mohammad Hossein Karami Majid Abdouss Mohammadreza Kalaee Omid Moradi
        Hydrogels are three-dimensional networks of hydrophilic polymers capable of absorbing and retaining significant amounts of fluids, which are also widely applied in wound healing, cartilage tissue engineering, bone tissue engineering, release of proteins, growth factors, More
        Hydrogels are three-dimensional networks of hydrophilic polymers capable of absorbing and retaining significant amounts of fluids, which are also widely applied in wound healing, cartilage tissue engineering, bone tissue engineering, release of proteins, growth factors, and antibiotics. In the past decades, a lot of research has been done to accelerate wound healing. Hydrogel-based scaffolds have been a recurring solution in both cases, although their mechanical stability remains a challenge, some of which have already reached the market. To overcome this limitation, the reinforcement of hydrogels with fibers has been investigated. The structural similarity of hydrogel fiber composites to natural tissues has been a driving force for the optimization and exploration of these systems in biomedicine. Indeed, the combination of hydrogel formation techniques and fiber spinning methods has been very important in the development of scaffold systems with improved mechanical strength and medicinal properties. Hydrogel has the ability to absorb secretions and maintain moisture balance in the wound. In turn, the fibers follow the structure of the extracellular matrix (ECM). The combination of these two structures (fiber and hydrogel ) in a scaffold is expected to facilitate healing by creating a suitable environment by identifying and connecting cells with the moist and breathing space required for healthy tissue formation. Modifying the surface of fibers by physical and chemical methods improves the performance of hydrogel composites containing Manuscript profile
      • Open Access Article

        6 - Shape memory polymers: Structure, mechanism, functionality, and applications
        Hamidreza Haydari Marziyeh Hosseini
        In the last three decades, many researches have been conducted in the field of shape memory polymers, and in the past few years, the interest in research in this field has received a lot of attention. In this study, a comprehensive and complete review of the structure, More
        In the last three decades, many researches have been conducted in the field of shape memory polymers, and in the past few years, the interest in research in this field has received a lot of attention. In this study, a comprehensive and complete review of the structure, mechanism, model and applications of this category of polymers has been done. In general, the mechanisms of shape memory polymers are divided into three groups: direct thermal induction, indirect thermal induction, and optical induction, and each has its own switch unit that controls the shape structure. These switches have amorphous and semi-crystalline phase, which are defined in two phase and molecular levels. Also, increasing the mechanical properties, including the strength and toughness of shape memory polymers, is of great importance, which can increase their efficiency. Shape memory polymers can be used in medical, aerospace, textile and other industries. In the textile industry, the electrospinning process is used as a simple and efficient method for the preparation of shape memory polymer fibers and the development of their structure, and the mechanism and method of preparation of these fibers will be investigated. In the last three decades, many researches have been conducted in the field of shape memory polymers, and in the past few years, the interest in research in this field has received a lot of attention. In this study, a comprehensive and complete review of the structure, mechanism, model and applications of this category of polymers has been done. Manuscript profile